Special products 2.1.17
Warm up: Multiply the following $(x+5)(2 x-5)$ and $\left(3 x^{2}+2 x+1\right)\left(2 x^{2}-3 x+9\right)$
We have been multiplying polynomials and now it is time for some special cases.
Square of sums
$(4 x+5)^{2}$ What does the squared mean?
So what we really have is $(4 x+5)(4 x+5)$ Which we know how to solve
We get $16 x^{2}+40 x+25$ Now looking at the first and last term what do you notice? They are both square numbers. What about the middle term? How can we get that term? $(a+b)^{2}=a^{2}+a b+a b+b^{2}=a^{2}+2 a b+b^{2}$ This is true for any square of sums.

You try:
$(8 c+3 y)^{2}$

Square of difference
$(6 x-1)^{2}$ We know that this means $6 \mathrm{x}-1$ times $6 \mathrm{x}-1$ which we can solve and get $36 x^{2}-12 x+1$ But let's look at a non-numeric example $(a-b)^{2}=a^{2}-a b-a b+b^{2}=a^{2}-2 a b+b^{2}$ This method works for all square of a difference problems.

You try:
$\left(5 x^{2}-2 y\right)^{2}$

See if you can figure out a rule for the following.
$(3 n+2)(3 n-2)$

