Solving Quadratic equations by completing the square 3.20.17

Welcome

Warm up: SOlve equations with x squared in it.

So we have used factoring to solve for the x-intercepts. There are other methods to solve for the x-intercept.

Given the equation:
$x^{2}-10 x+25=7$ Are we able to factor the left hand side of the equation? Yes it's a perfect square
So we can write $(x-5)^{2}=7$ So if we wanted to solve for x we could square root each side.
$x-5= \pm \sqrt{7}$ and then add 5 to both sides.
$x=5 \pm \sqrt{7}$ Can we approximate the two solutions of this and approximate where they would be on the x -axis.

There is a necessity to make some equations into perfect squares. We can do this using algebra
$x^{2}-14 x+3=-10$ First we need to move c the +3 to the other side
$x^{2}-14 x+0=-10-3$ Then we need to replace the 0 with half of b squared $\left(\frac{b}{2}\right)^{2}$ so $\left(\frac{14}{2}\right)^{2}=49$ So we can add 49 to both sides $x^{2}-14 x+49=-10-3+49$ or $x^{2}-14 x+49=36$ Which we can then factor the left hand side $(x-7)^{2}=36$ So solve for x we square root each side $x-7= \pm 6$ Then we add 7 to both sides $x=7 \pm 6$ or $x=1,13$

Example 2:
$x^{2}+14 x-9=6$
$x^{2}+14 x=6+9 \quad$ add 9 to each side
$x^{2}+14 x+49=15+49 \quad$ Add (half of b) squared to both sides $\left(\frac{b}{2}\right)^{2}$ so $\left(\frac{14}{2}\right)^{2}=49$
$(x+7)^{2}=64 \quad$ Factor the left hand side
$x+7= \pm 8 \quad$ Square root each side
$x=-7 \pm 8$ so $x=-15,1 \quad$ Subtract 7 from each side

Homework PG 542 \#33-36 Quality over quanity

