Multiplying a polynomial by a monomial 1.30.17

Welcome.

Last week we discussed simplifying monomials when they we being multiplied. This week we will take it a step forward by multiplying a polynomial by a monomial.
$-2 x^{2}\left(3 x^{2}-7 x+10\right)$ The first thing we need to do is distribute the $-2 x^{2}$ to create equation $-2 x^{2} \cdot 3 x^{2}+2 x^{2} \cdot-7 x+-2 x^{2} \cdot 10$ Then we must simplify using the methods from last week $-6 x^{4}+14 x^{3}-20 x^{2}$.
$4\left(3 x^{2}+5 x\right)-x\left(x^{2}-7 x+12\right)$ First we should distribute before applying the subtraction sign $12 x^{2}+20 x-x^{3}+7 x^{2}-12 x$ Then we should combine like terms and put it in proper order $-x^{3}+19 x^{2}+8 x$

We can also solve using this method when there is an equals sign $x(x-12)+x(x+2)+25=2 x(x+5)-15$ First we should distribute $x^{2}-12 x+x^{2}+2 x+25=2 x^{2}+10 x-15$ Then we should combine like terms on both sides $2 x^{2}-10 x+25=2 x^{2}+10 x-15$ Then try to all the x on one side and the constant on the other $-20 x=-40$ Then divide by -20 and $\mathrm{x}=2$

You try
$x\left(5 x+x^{2}\right)$
$5 x\left(4 x^{3}+6 x^{2}-2 x+3\right)-4\left(x^{2}+7 x\right)$
$2(4 x-7)=5(-2 x-9)-5$
$x^{3}+5 x^{2}$
$20 x^{4}+30 x^{3}-14 x^{2}-13 x$
-2
HW PG 446 20-23, 29-32, 40-43

