Introduction to exponential growth and decay 4.6.17

HAND BACK TEST.

Warm up.

We have worked with the graphs when x is squared why don't we try when x is the exponent.

Graph the following equations
$y=1(2)^{x} \quad y=2(3)^{x} \quad y=1\left(\frac{1}{2}\right)^{x} \quad y=2(.4)^{x}$
What do you notice about the difference in the graphs.

Exponential growth: $y=a(b)^{x}$ a is greater than 0 and b is greater than 1 the graph will always be increasing.
For example $y=1(2)^{2}$ each time x is increased by 1 y is increased by a factor of 2 .

Exponential Decay: $y=a(b)^{x}$ When a is greater than 0 and b is between 0 and 1 , the graph will decreasing (decaying).

For Example: $y=a\left(\frac{1}{2}\right)^{x}$ For each increase of one in the x, y decreases to half of its previous value.

For each of the general equations exponential growth or decay:
A: Initial value
If $b>1$ Exponential growth means b is the growth factor
And $r=$ growth rate $b=1+r$

If $0<b<1$ Exponential Decay the b means decay factor
And r : Decay factor $b=1-r$
Given $y=3(1.8)^{x}$
Is it growth or decay? What is the initial value? Growth or decay factor? Growth or decay rate?

Given: $y=9(0.8)^{x}$
Is it growth or decay? What is the initial value? Growth or decay factor? Growth or decay rate?

HW: Fill out a table with the x-values of $-3,-2,-1,0,1,2,3$ Find the y-values and plot what you can for the problems PG558 \#13 and 16

